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ABSTRACT 

With the high increase in the development of the latest tech in modern world, the use of electronic devices and 
smart appliances has gone way up in the daily life. Consequently, the patterns of energy consumption continuously 
change, with highly dynamic behaviour over time. Precise monitoring of the real-time loads variation is critical 
in the grid management process and for the improvement of energy efficiency. Energy disaggregation, which uses 
the total aggregated load data to estimate the power consumption of individual appliances, is a highly promising 
and economical method to monitor electricity usage, and in real time. It offers useful information to consumers, 
utility providers, researchers and policy makers by enabling informed decision making and efficient grid 
operations implementation strategies. Non- Intrusive Load Monitoring (NILM) is a data-driven method to 
ascertain the power consumption of individual appliances, based on measurements taken from a single point of 
measurement (usually a main energy meter). This approach eliminates the need for multiple sensors on each 
appliance and thus makes it cost-effective and appropriate for smart homes. This thesis is on the design and 
implementation of an efficient NILM framework based on energy disaggregation methods for residential smart 
home applications. The proposed research is divided into four major phases. The first phase is a detailed review 
and comparative analysis of current NILM techniques used with a variety of load characteristics and a focus on 
their applicability to residential energy monitoring. The development of such techniques will allow for the proper 
disaggregation of individual appliance loads from aggregated consumption data, which will increase the 
effectiveness of NILM in the energy disaggregation process. In the second phase, different energy disaggregation 
algorithms which are suitable for smart home environments are analyzed and the most suitable method for 
residential load monitoring applications is determined. 

Keywords: NILM; appliance-wise power consumption; soft computing approaches; energy disaggregation.



 
 

271 

INTRODUCTION 

With the increased rate of industrialization in the 
world, the consumption of electricity has been rising 
steadily in all sectors. Technological progress has 
brought a multitude of electrical appliances to 
everyday life, which has led to increasing 
dependence on energy-intense appliances for 
comfortable and convenient life. Consequently, the 
consumer level energy demand has increased 
significantly in this fast paced modern society. In 
response to this growing demand, extensive 
deliberations have been made in terms of energy 
conservation and management, demand side 
management and energy efficient practices. One of 
the things that can be done to balance the energy 
demand is changing the consumption behaviour, 
optimising the schedule of use and adaptation to the 
energy generation resources. Energy conservation 
not only assists economic efficiency and demand 
regulation, but also means that it plays an important 
role in avoiding carbon emissions. 

The Building and Climate Change report 
underscores the fact that residential and commercial 
buildings in India are responsible for 39 per cent of 
the overall carbon emissions, which is more than the 
emissions from the transportation and industrial 
sectors (Khan et al., 2025). Further research states 
that, in countries like India, almost 93 percent of the 
carbon emissions come from residential buildings 
(Chen et al., 2019). These findings highlight the need 
to focus on residential energy efficiency to tackle 
environmental problems caused by the rapid 
urbanisation. 

The development of smart grid technologies has 
allowed greater capabilities in power system 
monitoring and control. Smart metering systems 
enable consumers to monitor how much electricity 
they use in a day, and real-time feedback of energy 
consumption encourages consumers to use their 
appliances more efficiently. Next-generation smart 
metering infrastructures enable fine-grained 
monitoring of load by using new and advanced cloud 
platforms and intelligent learning algorithms (Lemos 
et al., 2025). Recent research has shown that real 

time, appliance level feedback can lead to energy 
savings of more than 12% (Lin, 2022).  

Moreover, real-time identification of loads allows 
energy providers to provide adequate grid services 
depending on the usage pattern of consumers. 
Therefore, online real-time load monitoring systems 
offer great potential to achieve energy efficiency in 
terms of better utility support services (Ray, 2025). 

The main objective of this research is to achieve 
efficient Non-Intrusive Load Monitoring (NILM) 
framework through the use of appropriate energy 
disaggregation algorithm for smart home 
applications. The proposed model of NILM is further 
integrated with a microcontroller based hardware 
prototype for real-time monitoring and control of 
appliances towards enhanced energy-efficient 
operations of the grid (Chen et al., 2021). 

Within the modern power networks, the development 
of smart grid technologies has reinforced the 
possibilities of data acquisition in real time and load 
management. Appliance specific usage patterns are 
an important parameter in the analysis of energy 
consumption in demand side management 
applications (Alsalemi et al., 2021).  

Load disaggregation or non-intrusive appliance load 
monitoring is an important source of data for direct 
feedback control strategies in smart home energy 
management systems. Existing NILM 
methodologies can be broadly grouped into intrusive 
and non-intrusive monitoring methodologies. 
Intrusive monitoring is the method used to place 
sensors at the appliance node level, while non-
intrusive monitoring uses advanced signal 
processing and machine learning algorithms to 
reconstruct individual appliance consumption from 
the aggregated meter data (Lin et al., 2022). 

The framework of NILM improves user awareness 
of the use of electricity and effective control 
strategies of devices. The performance of NILM 
relies on the choice of suitable energy disaggregation 
algorithms depending on data availability, 
characteristics of appliances and load profile 
fluctuations (Joha et al., 2024).  
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In this study a NILM developments based on a 
decision tree is developed using benchmark datasets, 
namely the Reference Energy Disaggregation 
Dataset (REDD) and the Retrofit Decision Support 
Tools for UK Homes using Smart Home Technology 
(REFIT) dataset. A model is proposed which is then 
tested in terms of the normal performance indicators 
to prove its effectiveness. Furthermore, in order to 
validate the experimental results, a microcontroller-
based hardware setup which is integrated with the 
ThingSpeak cloud platform is developed and 
connected with the proposed NILM model, so as to 
facilitate real-time monitoring and control of 
appliances for better energy efficiency (Sayed et al., 
2021).  

RELATED WORKS  

Non-intrusive load monitoring (NILM) has received 
much attention in academic research and industrial 
practice during the past two decades, because of its 
great potential to improve building level energy 
efficiency (Jahid, 2025). Consequently, significant 
efforts have been made in developing more robust 
machine learning models, which constitute a very 
central role in the energy disaggregation process and 
are crucial for making energy savings possible. This 
research trend is basically gone from classical 
supervised learning methods to deep learning based 
methods and unsupervised methods such as Hidden 
Markov Models (HMMs) are still an active research 
topic because of their performance in the problem of 
dis-agglomeration (Stogia 2025). 

With the constant development of technology, 
modern electrical appliances become increasingly 
sophisticated and their operation states become more 
complex and less distinguishable. In this context, the 
advent of deep learning is a significant breakthrough 
in research for energy disaggregation. Three deep 
neural networks architectures - namely: Long Short-
Term Memory (LSTM) networks, denoising 
autoencoders, and a predictive model for estimating 
the appliance activation time, deactivation time, and 
average power consumption (Hu et al., 2020). Their 
results showed real improvements over the 
conventional methods in terms of accuracy and 
adaptability to unseen configurations of houses. 

Extending this work, proposed a sequence to point 
learning (Seq2point) framework to deal with the 
Single-Channel Mix Source Separation (MSS) 
problem (Yuan et al., 2020). By reformulating the 
learning task in order to simplify the mapping for the 
neural nets, their technique achieved better 
prediction accuracy and better performance on the 
real-world datasets by the automatic extraction of 
relevant signal features, which were previously 
handcrafted. 

In accordance with these developments, adaptive 
CoBiLSTM (Co.-attentive Bidirectional Long 
Short.-Term Memory) model in order to address the 
limitations of static disaggregation approaches (Lin 
2020). By taking advantage of bidirectional LSTMs, 
the model captures the context of the variations in 
consumption patterns and hence gives extra 
flexibility and accuracy in estimating the appliance. 
Despite these methodological improvements, NILM 
still has its own substantial challenges, especially 
caused by the diversity of appliances and differences 
in user behavior. Variability prevents development of 
universally applicable NILM models (Franco et al., 
2021). Additionally, the limited temporal resolution 
of smart meter measurements to limit the 
performance of disaggregation for some categories 
of appliances (Gheorghe, 2025). 

In order to overcome these limitations, probabilistic 
methods such as factorial hidden Markov models 
(FHMMs) have shown great potential. Bonfigli et al. 
suggested an improved FHMM framework coupled 
with modified AFAMAP algorithm by exploiting 
measurements of both active and reactive power for 
improved accuracy of disaggregation (Lin 2025 et 
al., 2025). Similarly, Modified FHMM (MFHMM), 
which decreases the computational complexity while 
enhancing the segmentation and identification of 
appliance operating states and demonstrated a good 
performance on publicly available datasets 
(Gopinath and Kumar 2023). In parallel, Wu et al. 
tried to reduce the dependency of HMM-based 
models on past information about appliances by 
proposing an adaptive clustering-based approach 
coupled with FHMMs, which further improved the 
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accuracy in terms of disaggregation (Mari et al., 
2023). 

Besides probabilistic models, hybrid learning 
strategies and ways of transfer learning have come 
out as promising directions. Introducing two 
transfer-learning strategies which can improve the 
generalisation of the model and decrease the amount 
of training data needed (Stefani et al., 2025). A 
hybrid CNN-LSTM model that takes mutual 
advantage of spatial and temporal features in load 
signatures, leading to better accuracy of load 
disaggregation (Papaioannou et al., 2025). 

The question of the scalability and adaptability of 
NILM solutions is a critical issue in the research. 
Pereira and Nunes emphasized the need for the 
design of methods that can be deployed on a large 
scale in various operating environments (Wang et al., 
2022). At the same time there is increasing attention 
to privacy and ethical issues, for example, the work 
(Franco et al., 2023) which explored the trade-off 
between the analytical advantages and the user's 
privacy in smart-metering systems. Although a lot of 
progress has been made in the field of NILM 
research, there are important challenges that remain, 
in particular with respect to model generalisation and 
the reliance on labelled training data. These 
challenges to the optimisation of the whole power 
distribution network using smart meter data 
underlining the fact that energy disaggregation is 
only a part in the bigger picture of energy system 
efficiency improvement (Serna et al., 2025).  

PROPOSED METHOD 

The proposed framework works as an intelligent 
power management system, and thus allows for 
remote monitoring and control by consumers of 
electrical appliances in their homes by Internet of 
Things (IoT) enabled applications such as mobile 
applications. In conjunction with real time 
visualization of energy consumption and budgetary 
management functionalities, the system provides 
remote as well as manual control (on/off switching 
mechanisms) of devices. It provides data 
communication integrity between the user interface 
and the control unit, includes an emergency alert 

capability, and integrates a Google Map interface to 
help utility providers identify the locales with higher 
than normal energy consumption rates. These 
features are carefully designed to give consumers as 
well as the utility operators the ability to move 
towards sustainable energy practices by allowing 
ongoing remote monitoring and scheduling of 
appliance operate, which can optimise energy 
utilisation.  

The hardware structure of the proposed system 
consists of a client unit as shown in Figure 1. In the 
present implementation the microcontroller interface 
i.e. Arduino board is used as the client unit and is 
responsible for obtaining the measurements from the 
connected sensors. These measurements are then 
sent via a central database for storage and further 
processing. Apart from data acquisition, 
microcontroller also connects the electrical 
appliances by controlling them. The central unit is 
implemented with ESP32 module, with database 
stored within ESP32 module and web-based services 
such as monthly energy budgeting and notification 
alert are delivered.   
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Figure 1: Architecture of the Proposed System 
Model 

Furthermore, the system incorporates a mobile 
application that is created on a PHP/MySQL stack 
for IoT-based data monitoring. The application 
allows the remote access by authorized utility users 
to a variety of functionalities, consisting of real time 

visualization of the energy consumption through 
gauge charts, manual control of appliances, and 
configuration of system parameters. Concurrently, a 
web-based interface for end users and utility 
operators is provided which gives them the 
opportunity to access, monitor and manage the 
services provided by the central unit

3.1. SYSTEM ANALYSIS AND DESIGN 

In order to build the smart metering system, there are 
some core entities to be defined, as follows: client, 
staff, sub-client, power cost, client budget, power 
consumption records, non-active client contact and 
system setup. These entities are shown in Figure 1 
(System Architecture Diagram) and Entity-
Relationship Diagram in figure 2. The relationship 
between the client and sub-client entities follows a 
one to many relationship, i.e. one client may contain 
several sub-clients in a household. Similarly the 
client table has a one to many relationship with the 
power cost table - a single power cost record is due 
to a single client, but a single client can have multiple 
power cost records over a period of time.  

 

    Figure 2: ER Diagram of the Proposed System 

The non- active client contact table is committed to 
save the latest contact details recorded by the service 
provider. Accordingly, the relation between the 
client, non-active client contact entities is one to 
many and is considered to be optional. In addition, 
the system setup table maintains a one-to-many 
relationship with the client table, since it is possible 
to have more than one device configured for one 
client while, at the same time, each device 
configuration is only associated with one client. 
Likewise, the client payment record table is related 
to the client table in a one to many relationship since 
payments are done on a monthly basis and each 
payment record is equal to one client. 

In order to distinguish the similar appliances, 
consecutive Fourier transforms are used to create the 
spectrograms of the instantaneous power demand. 
Initially, the discrete time Fourier transform of each 
signal x is calculated by summation over all temporal 
indices corresponding to a time less than or equal to 
tn = 0.5 s by weighting each sample by sinusoids 
with a frequency of f = 30 kHz. The resulting 
transform Xj represents the signal in terms of the 
frequency. A Hanning Window is applied to obtain 
adequate frequency resolution and to reduce the 
spectral leakage. windowing configuration is used to 
specify the overlap (640 samples) between 
consecutive windows for a segment length (5210 
samples). It is noteworthy that this windowing 
strategy is expected to capture the overarching 
patterns of the appliances without preferentially 
biasing transient or steady state behaviour. 

X(f) = &𝑋(𝑛)	e!"#$%&
'!(

)*+

 

x(n) is the current signal that is measured at discrete 
times. N is the total number of samples that we 
consider up to tn = 0.5 s. fff is the frequency 
component, and its maximum frequency is 30 kHz. 
X(f) is the frequency domain representation of such 
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a signal. 

𝑆{--,/} =	
2Δ#

𝑇 𝑋/𝑋/∗ 

From the visualizations, you can see clear differences 
between appliances even if you consider only 0.5 
seconds of data (15,000 samples). For each appliance 
we take a slice of 0.5 seconds and add additional 
zeros to have the same length for each slice. We have 
chosen this smaller length of time for two main 
reasons: first, because it allows us to have more 
training data (from 1876 to 13000 samples), which 
helps the model to work better; second, because we 
can now classify appliances in real-time or close to 
real-time. 

3.2 System Modelling 
Non-intrusive load monitoring (NILM) is a 
computational approach for measuring the power 
consumption of individual appliances using only a 
single aggregate meter, which measures the 
consumption of several devices. By using signal 
processing algorithms in these aggregate 
observations NILM reduces the need for individual 
sensor installation on each appliance. Non-intrusive 
appliance load monitoring (NIALM) is based on the 
distribution mains where the power signals change 
and is used to determine the energy consumption of 
individual appliances. The methodology has many 
practical uses such as retrofitting appliance 
recommendations, smart house automation, demand 
response services, and support for system operators 
for use in the distribution-level decision making. 
Every appliance has a unique power consumption 
signature, allowing the appliance to be identified and 
analyzed for its behaviour. By taking advantage of 
these signatures, NILM enables grid management, 
fault detection and appliance level usage pattern 
estimation. 

The work process of a usual NILM model is shown 
in Figure 2 and usually consists of five main steps:   

• Overall Sensing and data collection Electrical 
parameters are measured at the sensing nodes 
at a defined sampling rate.   

• Data pre- processing: The collected data are 
pre - processed to remove noise and 
redundancy, thereby, ensuring a clean data 
input for further analysis.   

• Feature extraction and classification: The 
essential features are extracted from the pre - 

processed data to characterise each load 
effectively.   

• Detection of events: Using the extracted 
appliance signatures, the model is used to 
predict the events (OFF, ON or Multi-State) 
for unseen data samples.   

• Model evaluation and validation: The trained 
model is evaluated on unseen data and the 
performance metrics such as accuracy, 
precision, recall, true/false positive rates are 
evaluated. 

3.3. Artificial Intelligence 
In general, energy disaggregation algorithms are 
based on supervised machine learning, a paradigm 
that requires input samples that have known labels. 
Machine learning (ML) is a methodology that 
involves the use of statistical methods to support the 
progressive improvement in performance of a system 
through data, an experiential set of data or bio 
inspired optimization processes. Depending upon the 
specific mode of learning engaged, ML models are 
broadly classified into supervised, unsupervised or 
reinforcement learning. In the field of energy 
disaggregation, appliance labeling is traditionally 
carried out with standardized sets of data. 

The disaggregation model can include one or more 
of the following techniques for characterizing the 
load pattern: 

• Classification 
• Regression 
• Clustering 
• Dimensionality Reduction 

 

The selection of the correct technique is dependent 
on the nature of a dataset and a learning algorithm. 
Selecting the appropriate classification to perform 
the task of mapping extracted feature vectors to 
known appliance signatures is a crucial step to 
perform in order to accurately identify loads in 
NILM. Based on the appliance data collected and the 
corresponding database, appropriate NILM model is 
developed for effective energy disaggregation. 
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Figure 3: Process of Machine Learning 

NPV = t =&
𝑁𝐶𝐹!
(1 + 𝑖)!

"

!#$

− I 

The resolution of the problem of Non-Intrusive Load 
Monitoring (NILM) requires the application of 
machine learning algorithms, which, by their very 
nature, mediate the complexity of the problem and 
the refinement of predictive models. The 
construction of a NILM model is reliant on numerous 
determinants, including the provision and 
accessibility of benchmark datasets, model aptitude 
for load characterization and the scalability of the 
overall system:   

• Conventional supervised learning models 
are predominantly used for natural language 
processing tasks of NILM that require 
labelled datasets. In recent developments, to 
accommodate instances of novel data and 
heterogeneous operational profiles of 
appliances, unsupervised learning, semi-
supervised learning and hybrid approaches 
have been researched in depth with the 
objective of augmenting the efficacy of 
models.   

• Algorithm Categorization: Although the 
learning paradigm is the main 
categorization criterion, NILM algorithms 
are further analyzed in terms of that of the 
training window size and the target variable 
type, thus enabling performance 
improvement.   

• Dynamic Load Patterns: Consumer load 

usage patterns are dynamic by nature and 
can be prone to temporal variation which 
can lead to data redundancy. Consequently, 
the reliability and trustworthiness of 
machine learning models take a critical 
position in the empirical evaluation.   

• Dependability in AI Models: In order to 
overcome the above-mentioned issues, 
there has been a new line of research that 
questions various scenarios that affect the 
decision-making ability of AI models in the 
NILM context.   

• The dependability of emerging AI 
algorithms for NILM is based on the 
following six key aspects: reliability, 
scalability, robustness, explainability, 
fairness, and privacy. 

 

RESULTS AND DISCUSSION  

Smart meter hardware continuously monitors energy 
consumption in real time, processes the sensor data 
obtained, analog-digital conversion, and gets the 
result of processing on LCD display.  Then the meter 
sends the aggregated data to a centralized database 
on an hourly basis.  The hardware components have 
been designed as per the web services, thus enabling 
remote control of household appliances through a 
mobile application in the on and off modes. Device 
actuation is accomplished via a collection of a set of 
values in a JSON array sent from an internet-enabled 
Arduino platform.  Furthermore, Cloud Messaging 
of the Firebase has been integrated within a 
Raspberry Pi in order to send notifications for 
various events. The smart relays are the middlemen 
between the Arduino and the home devices and thus 
remote power control is possible (see Figure 10). 

The basic hardware in question includes:   

• ESP32 - Works as the control unit which 
aggregates the data received from the client 
modules.   

• Arduino - Works as reading module, it 
collects the measurements from the sensors 
and sends them to the control unit.   

• Current sensor - Non-invasive device to 
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quantify electrical consumption of the 
devices and relay the data to Arduino.   

• Additional components - Encompass 
resistors, wires, relays, capacitors and similar 
electronic components.   

I²C module - The module allows communicating 
between the Arduino and the LCD using the least 
number of pins. 

 In order to interface with the current sensor, a stereo 
jack is used to get both positive and negative signals; 
this signal path is stabilized by a network of resistors 
(33 o, two 10 k O) and a 10 uF capacitor which in 
conjunction stabilize the voltage supplied to 
Arduino, hence within the 5 V limit specified for the 
device. The overall architecture includes an Arduino 
Uno R3, LCD display, Ethernet shield with internet 
connection capability and router for network 
communication (see Figure 11).   

In order to prove such feasibility in practice, a 
prototype model house was made out of wood and 
installed with LEDs, an equivalent of household 
loads. These LEDs are remotely controllable through 
a mobile application, therefore demonstrating the 
scalability of the system to real life appliances.  In 
terms of research that focuses on energy 
disaggregation, the publicly accessible REDD 
(Residential Energy Disaggregation Data Set) is a 
rich source of granular data on power consumption 
from many different households.   

Figure 4: Connection Diagram of project 

While machine-learning and data-mining techniques 
offer encouragement for improving energy 
efficiency, progress has been limited by the lack of 
available big data-sets that can be accessed by the 
public. Consequently, the REDD repository 
represents an interesting resource for preliminary 
investigations and low-barrier research in the area of 
Non-Intrusive Load Monitoring (NILM) research. 

4.1.Design Requirements 
A burden resistor is very critical to the safe operation 
of a current transformer (CT). If a CT is connected to 
a current carrying conductor without a burden 
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resistor it can produce a dangerously high voltage at 
its terminals which may cause damage to the 
insulation and destroy the device. 

 

Figure 5: Hardware Model of our Project 

Safety Standards for the use of current transformer: 

• It is imperative that the current transformer 
leads should be connected before clamping it 
around a live conductor, and, likewise, that 
the transformer should be disconnected from 
the conductor before removing the leads 

• During installation on a live conductor, it is 
better to short circuit the secondary rather 
than leave it open.   

• Current transformer should not be connected 
to bare conductor unless it is specifically 
designed for the purpose.   

• Adherence to these precautions is the 
guarantee for safe operation of current 
transformer and reduce the risk of equipment 
damage or personal injury.  

• The value of the burden resistor is obtained 
from the specifications of HWCT, which has 
a maximum primary current of 30 A.  

The calculation will go as follows: 

1. Determine the primary peak current: 

I2345637,	296: = I;<= × √2 = 30 × 1.414
≈ 42.43	A 

2. Calculate the secondary peak current Primary 
peak current divided by the number of turns in the 

current transformer (check the datasheet): 

𝐼>?@A)BCDE,F?CG =	
I2345637,	296:

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑢𝑟𝑛𝑠 =
42.43
1800

≈ 0.02357𝐴 

3. One should choose the burden resistor to get the 
best resolution: The voltage on the burden resistor at 
its maximum current should be half of the ADC 
reference voltage approximately. If the reference is 
5 V: 

𝑉HIDB?) =	
5
2 = 2.5𝑉 

Using Ohm's law, the value of the burden resistor 
can be calculated as: 

𝑅HIDB?) =	
𝑉HIDB?)

𝐼>?@A)BCDE,F?CG
=

2.5
02357 ≈ 106Ω 

Table 1: Home appliances and Current 
Measurement 

Device IRMS (A) 
Vacuum Cleaner 5.80 
Fan 0.25 
Boiler 3.90 
Blender 1.75 

 

The optimum burden resistance for a current 
transformer is given by: 

RJK3L9&	(4L96N) =
𝑉PQR
2

𝐼>?@A)BCDE,F?CG
 

Substituting the given values: 

Rburden =
2.5	V

0.023570226	A ≈ 106.67Ω 

The optimum burden resistance for a current 
transformer is given by: 

RJK3L9&	(STUV9&) = 100Ω 

This is to make sure that the peak of the current of 
the load will not cause a voltage that is greater than 
5 V over the burden resistor 
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Table 2: Metrics values of home appliances 
energy calculation 

Appliance Precisio
n 

Recal
l 

F1-
Scor
e 

Accurac
y 

Air 
Conditione
r 

0.80 0.85 0.82 0.97 

Blender 0.88 0.98 0.93 0.98 
Coffee 
Maker 

0.99 0.99 0.99 0.99 

Compact 
Fluorescent 
Lamp 

0.97 0.92 0.94 0.98 

Fan 0.84 0.70 0.76 0.97 
Fridge 0.90 0.80 0.85 0.97 
Hair Iron 0.98 0.99 0.99 0.97 
Hair Dryer 0.95 0.92 0.93 0.99 
Heater 0.94 0.95 0.95 0.98 
Incandesce
nt Light 
Bulb 

0.75 0.87 0.81 0.97 

Laptop 0.70 0.91 0.79 0.96 
Microwave 0.95 0.88 0.91 0.98 
Soldering 
Iron 

0.72 0.98 0.83 0.97 

Vacuum 0.99 0.93 0.96 0.98 
Washing 
Machine 

0.96 0.89 0.92 0.98 

Water 
Kettle 

0.99 0.99 0.99 0.99 

 

Table 3: Average Overall energy consumption 
monitoring 

Day Energy 
Consumption 
(kWh) 

Average 
Temperature (°C) 

Day 
1 

12.8 24.8 

Day 
2 

11.5 24.6 

Day 
7 

10.1 24.7 

 

 

Figure 5: Reliability of Project Energy 
Estimations 

CONCLUSION 

The grid application of ICT technology has 
facilitated a bi-directional communication between 
the utility and the prosumers, which has led to the 
introduction of sophisticated methods in power 
systems. In order to match the energy supply with the 
demand, demand-response (DR) programs are being 
implemented. One of the brightest technologies to 
use in smart grids implementation is the Internet of 
Things (IoT). Using smart plugs and Fog computing 
together with artificial intelligence will enable the 
implementation of DR programs by connecting IoT-
enabled smart meters and smart plugs. This paper 
provides hardware and software solutions to DR 
programs using the paradigm of the fog-computing. 
The smart plug is used to measure the frequency of 
alternating current, RMS voltage and current, power 
factor and active, reactive and apparent power. These 
measurements make it possible to identify 
autonomously the appliance at the smart meter by the 
machine learning algorithms. A number of 
lightweight classification processes that could be 
used in miniature devices were assessed and it was 
found that the decision tree algorithm delivers the 
most accurate and the least latent results. The 
existing Home Energy Management System 
(HEMS) can work well in case the training dataset 
includes all the common appliances in the house. 
Nevertheless, HVAC systems are not regulated by 
the energy management algorithm to save energy yet 
ensure that users remain comfortable. Also, there are 
vulnerabilities since intruders would be able to affect 
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dynamic pricing using smart meters, which would 
negate the usefulness of the HEMS. 

References  

1. Khan M, Smith F, Van Aardt S, Hatefi S. AI-
Enhanced System to Monitor Real-Time 
Energy and to Identify Home Appliances. 
South African Journal of Industrial 
Engineering 2025;36(3):302–315. 

2. Chen YY, Lin YH, Kung CC, Chung MH, 
Yen IH. Design and implementation of cloud 
analytics-assisted smart power meters 
considering advanced artificial intelligence 
as edge analytics in demand-side 
management for smart homes. Sensors 
2019;19(9):2047. doi: 10.3390/s19092047. 

3. Lemos J, Ramos J, Gomes M, Coelho P. 
Artificial Intelligence-Driven User 
Interaction with Smart Homes: Architecture 
Proposal and Case Study. Energies 
2025;18(24):6397. doi: 
10.3390/en18246397. 

4. Lin YH. An advanced smart home energy 
management system considering 
identification of ADLs based on non-
intrusive load monitoring. Electrical 
Engineering 2022;104(5):3391–3409. doi: 
10.1007/s00202-022-01420-2. 

5. Ray AK. AI-Driven Privacy and Security 
Frameworks for Smart Homes: A 
Comprehensive Survey. Int. J. Appl. Math. 
2025;38(11s):2345–2383. 

6. Chen YY, Chen MH, Chang CM, Chang FS, 
Lin YH. A smart home energy management 
system using two-stage non-intrusive 
appliance load monitoring over fog-cloud 
analytics based on Tridium’s Niagara 
framework for residential demand-side 
management. Sensors 2021;21(8):2883. doi: 
10.3390/s21082883. 

7. Alsalemi A, Himeur Y, Bensaali F, Amira A. 
Smart sensing and end-users’ behavioral 
change in residential buildings: An edge-
based internet of energy perspective. IEEE 

Sensors Journal 2021;21(24):27623–27631. 
doi: 10.1109/JSEN.2021.3094943. 

8. Lin YH, Tang HS, Shen TY, Hsia CH. A 
smart home energy management system 
utilizing neurocomputing-based time-series 
load modeling and forecasting facilitated by 
energy decomposition for smart home 
automation. IEEE Access 2022;10:116747–
116765. doi: 
10.1109/ACCESS.2022.3212780. 

9. Joha MI, Rahman MM, Nazim MS, Jang 
YM. A secure IIoT environment that 
integrates AI-driven real-time short-term 
active and reactive load forecasting with 
anomaly detection: a real-world application. 
Sensors 2024;24(23):7440. doi: 
10.3390/s24237440. 

10. Sayed A, Himeur Y, Alsalemi A, Bensaali F, 
Amira A. Intelligent edge-based 
recommender system for internet of energy 
applications. IEEE Systems Journal 
2021;16(3):5001–5010. doi: 
10.1109/JSYST.2021.3068831. 

11. Jahid MSR. AI-Powered Smart Home 
Automation: Enhancing Security, Energy 
Efficiency, and User Experience in Modern 
Housing. Am. J. Interdiscip. Stud. 
2025;6(02):76–114. 

12. Stogia M, Dimara A, Papaioannou C, 
Eleftheriou O, Papaioannou A, Krinidis S, 
Anagnostopoulos CN. ENACT: Energy-
aware, actionable twin utilizing prescriptive 
techniques in home appliances. Smart Cities 
2025;8(5):155. 

13. Hu YC, Lin YH, Lin CH. Artificial 
intelligence, accelerated in parallel 
computing and applied to nonintrusive 
appliance load monitoring for residential 
demand-side management in a smart grid: A 
comparative study. Applied Sciences 
2020;10(22):8114. doi: 
10.3390/app10228114. 

14. Yuan X, Han P, Duan Y, Alden RE, 
Rallabandi V, Ionel DM. Residential 



 
 

281 

electrical load monitoring and modeling – 
state of the art and future trends for smart 
homes and grids. Electrical Power 
Components and Systems 
2020;48(11):1125–1143. doi: 
10.1080/15325008.2020.1807913. 

15. Lin YH. A parallel evolutionary computing-
embodied artificial neural network applied to 
non-intrusive load monitoring for demand-
side management in a smart home: towards 
deep learning. Sensors 2020;20(6):1649. doi: 
10.3390/s20061649. 

16. Franco P, Martinez JM, Kim YC, Ahmed 
MA. IoT based approach for load monitoring 
and activity recognition in smart homes. 
IEEE Access 2021;9:45325–45339. doi: 
10.1109/ACCESS.2021.3069945. 

17. Gheorghe AC, Andrei H, Diaconu E, Andrei 
PC. Advances in Reducing Household 
Electrical and Electronic Equipment Energy 
Consumption in Standby Mode: A Review of 
Emerging Strategies, Policies, and 
Technologies. Energies 2025;18(4). doi: 
10.3390/en18041052. 

18. Lin YH, Chen YY, Wei SH. Active Privacy-
Preserving, Distributed Edge–Cloud 
Orchestration–Empowered Smart 
Residential Mains Energy Disaggregation in 

Horizontal Federated Learning. Int. Trans. 
Electr. Energy Syst. 2025;2556622. doi: 
10.1002/2050-7038.2556622. 

19. Gopinath R, Kumar M. DeepEdge-NILM: A 
case study of non-intrusive load monitoring 
edge device in commercial building. Energy 
and Buildings 2023;294:113226. doi: 
10.1016/j.enbuild.2023.113226. 

20. Mari S, Bucci G, Ciancetta F, Fiorucci E, 
Fioravanti A. An embedded deep learning 
NILM system: A year-long field study in real 
houses. IEEE Transactions on 
Instrumentation and Measurement 
2023;72:1–15. doi: 
10.1109/TIM.2023.3289654. 

21. Stefani D, Viktoratos I, Uruqi A, Astaras A, 
Christodolou C. An Energy-Aware AIoT 
Framework for Intelligent Remote Device 
Control. Mathematics 2025;13(24):3995. 
doi: 10.3390/math13243995. 

22. Papaioannou C, Tzitzios I, Papaioannou A, 
Dimara A, Anagnostopoulos CN, Krinidis S. 
EnergiQ: A Prescriptive Large Language 
Model-Driven Intelligent Platform for 
Interpreting Appliance Energy Consumption 
Patterns. Sensors 2025;25(16):4911. doi: 
10.3390/s25164911. 

 

 


